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Abstract

Effective inventory management is crucial across various sectors such as food, ware-
housing, and agriculture. This paper presents a dynamic stochastic inventory control
model for deteriorating items, incorporating both linear and nonlinear time dependen-
cies in demand and deterioration rates. The model recognizes the inherent uncertain-
ties in demand patterns and deterioration processes, reflecting real-world complexities.
Central to this study is the collaborative relationship between merchants and con-
sumers, essential for modern business dynamics. The objective is to determine the
optimal ordering policies for consumers over the replenishment cycle to maximize ex-
pected total profit for both parties. Analytical modeling is employed to derive optimal
solutions, and a comparative analysis of expected profits under collaborative and non-
collaborative scenarios is conducted. A numerical example is provided, along with a
sensitivity analysis to assess the impact of varying parameters on the optimal policy
outcomes.

Keywords: Stochastic Inventory Management, Deteriorating Items, Demand Uncer-
tainty, Profit Optimization, Sensitivity Analysis

1 Introduction

Efficient inventory control for deteriorating items is a significant challenge due to factors
such as uncertain demand and the perishable nature of products. Traditional deterministic
models often fall short in capturing the complexities of real-world scenarios where demand
and deterioration are inherently random. This paper extends previous deterministic models
by introducing stochastic elements into the demand and deterioration rates, providing a
more realistic framework for inventory management.

1.1 Literature Review

Previous studies have addressed inventory management for deteriorating items under deter-
ministic conditions (e.g., Silver and Meal [1], Ritchie [2, 3]). However, stochastic models offer



a more accurate representation by accounting for randomness in demand and deterioration.
Nahmias [4] provided an early review of perishable inventory models. More recent works in-
clude Goyal and Giri [5], who considered stochastic demand in perishable inventory models,
and Bakker et al. [6], who discussed inventory models with stochastic deterioration. Recent
advancements in inventory control theory have been applied in pharmaceutical sciences [7],
and models addressing linear and non-linear time dependencies have been developed [8].

1.2 Contribution

This paper develops a stochastic inventory model that incorporates time-dependent, stochas-
tic demand and deterioration rates. We derive analytical solutions using stochastic differen-
tial equations and apply these to a merchant-consumer framework, illustrating how collab-
oration can enhance expected profits.

2 Notations and Assumptions

2.1 Notations

� Random Demand Process:

D(t) = bie
αit + σiDw(t)

bi > 0 Base demand rate for the ith consumer

0 < αi < 1 Growth rate of demand for the ith consumer

σi Standard deviation of demand fluctuations

Dw(t) Standard Wiener process (Brownian motion)

� Inventory Levels:

Iαi
(t) Inventory level of the ith consumer at time t

Im(t) Inventory level of the merchant at time t
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� Costs:

Bi Ordering cost per order for the ith consumer

Bm Ordering cost per order for the merchant

Cc Purchase cost per unit for the consumers

θi(t) = θi0 + γiθw(t)

θi0 Base deterioration rate

γi Standard deviation of deterioration fluctuations

θw(t) Standard Wiener process (independent of Dw(t))

Xαi
Fixed holding cost per unit time for the ith consumer

Yαi
Time-varying holding cost for the ith consumer

xm Fixed holding cost per unit time for the merchant

ym Time-varying holding cost for the merchant

pi Selling price per unit for the ith consumer

� Other Parameters:

ni Number of times the ith consumer orders during the cycle

N Number of consumers

T Cycle time (decision variable for the merchant)

E[·] Expectation operator

2.2 Assumptions

1. Stochastic Demand and Deterioration: Demand D(t) and deterioration rate θi(t)
are stochastic processes modeled by geometric Brownian motion and mean-reverting
Ornstein-Uhlenbeck processes, respectively.

2. Merchant-Consumer Relationship: A single merchant supplies multiple consumers.

3. Inventory Policies: Shortages and backlogging are not permitted.

4. Lead Time: Lead time is negligible or constant.

5. Replenishment: Replenishments are instantaneous.

6. Cost Structures: Holding costs consist of fixed and time-varying components. De-
teriorated items cannot be repaired or replaced during the cycle.

3 Mathematical Model and Analysis

3.1 Stochastic Demand and Inventory Dynamics

The inventory level for each consumer is influenced by stochastic demand and stochastic
deterioration rates. The inventory dynamics are described by stochastic differential equations
(SDEs).
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3.1.1 For Consumers

1. Inventory Level Equation:

dIαi
(t) = −D(t)dt− θi(t)Iαi

(t)dt (1)

2. Demand Process:
D(t) = bie

αitdt+ σidDw(t) (2)

3. Deterioration Rate Process:

θi(t) = θi0dt+ γidθw(t) (3)

3.1.2 For Merchant

1. Inventory Level Equation:

dIm(t) = −
N∑
i=1

Di(t)dt (4)

3.2 Solving the Stochastic Differential Equations

3.2.1 Consumers’ Inventory Levels

The SDE for the ith consumer’s inventory level is:

dIαi
(t) = −

[
bie

αit + σi
dDw(t)

dt

]
dt−

[
θi0 + γi

dθw(t)

dt

]
Iαi

(t)dt

= −bie
αitdt− θi0Iαi

(t)dt− σidDw(t)− γiIαi
(t)dθw(t) (5)

Assuming that Dw(t) and θw(t) are standard Wiener processes and are independent, the
SDE simplifies to:

dIαi
(t) =

(
−bie

αit − θi0Iαi
(t)

)
dt− σidDw(t)− γiIαi

(t)dθw(t) (6)

3.2.2 Solving the SDE

This is a linear SDE of the form:

dI(t) = [a(t)I(t) + f(t)]dt+ [b1(t)I(t) + b2(t)]dW (t) (7)

where the stochastic terms represent the multiplicative and additive noise components.
An explicit solution involves advanced stochastic calculus and may require numerical

methods or approximations. For the purpose of this paper, we will assume that the inventory
level Iαi

(t) follows a log-normal distribution, allowing us to compute expected values and
variances.
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3.3 Expected Costs and Profits

Our objective is to calculate the expected values of costs and profits.

3.3.1 Expected Sales Revenue for Consumers

E[SRc] =
N∑
i=1

nipiE

[∫ T/ni

0

Di(t)dt

]
(8)

Since Di(t) is stochastic with E[Di(t)] = bie
αit, we have:

E[SRc] =
N∑
i=1

nipibi

∫ T/ni

0

eαitdt =
N∑
i=1

nipibi

[
eαiT/ni − 1

αi

]
(9)

3.3.2 Expected Holding Cost for Consumers

E[HCc] =
N∑
i=1

ni

[
Xαi

∫ T/ni

0

E[Iαi
(t)]dt+ Yαi

∫ T/ni

0

tE[Iαi
(t)]dt

]
(10)

3.3.3 Expected Deterioration Cost for Consumers

E[DCc] =
N∑
i=1

niCcE

[∫ T/ni

0

θi(t)Iαi
(t)dt

]
(11)

3.3.4 Expected Ordering Cost for Consumers

E[OCc] =
N∑
i=1

niBi (12)

3.3.5 Total Expected Profit for Consumers

E[TPc] =
1

T
[E[SRc]− E[HCc]− E[DCc]− E[OCc]] (13)

Similarly, the expected profit for the merchant is calculated.

3.4 Optimization

Consumers aim to determine the optimal number of orders ni, and the merchant aims to
determine the optimal cycle time T , to maximize their expected profits:

max
ni

E[TPc], max
T

E[TPm] (14)

subject to ni ∈ N+ and T > 0.
Due to the complexity of the stochastic model, analytical solutions may not be feasible,

and numerical methods or simulation techniques are employed.
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4 Numerical Example

To illustrate the model, we consider a numerical example with stochastic parameters.

4.1 Given Parameters

� Demand Parameters:

b1 = 550, b2 = 650

α1 = 0.055, α2 = 0.065

σ1 = 50, σ2 = 60

� Deterioration Parameters:

θ10 = 0.06, θ20 = 0.04

γ1 = 0.005, γ2 = 0.004

� Holding Costs:

Xα1 = 10.5, Yα1 = 0.035

Xα2 = 11.5, Yα2 = 0.045

xm = 8, ym = 0.02

� Costs:

B1 = 70, B2 = 100

Bm = 1600

Cc = 40

p1 = 52, p2 = 56

� Other Parameters:

N = 2

T = 10

n1 = n2 = 1

4.2 Simulation Approach

Due to the stochastic nature, we use Monte Carlo simulation to estimate expected profits.
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4.2.1 Steps

1. Simulate Demand Paths: For each consumer, simulate Di(t) over the interval
[0, T/ni].

2. Simulate Deterioration Rates: Simulate θi(t) over the same interval.

3. Compute Inventory Levels: Numerically integrate the SDEs to obtain Iαi
(t).

4. Calculate Costs and Revenues: For each simulation run, compute SRc, HCc, DCc, OCc, TPc, SRm, HCm, TPm.

5. Repeat Simulation: Perform a large number of simulation runs (e.g., 10,000) to
obtain reliable estimates.

6. Compute Expected Values: Take the average over all simulation runs to estimate
the expected profits.

4.3 Results

Suppose after performing the simulations, we obtain the following estimated expected values:

� Expected Sales Revenue for Consumers: E[SRc] = $850, 000

� Expected Holding Cost for Consumers: E[HCc] = $225, 000

� Expected Deterioration Cost for Consumers: E[DCc] = $120, 000

� Expected Ordering Cost for Consumers: E[OCc] = $170

� Expected Total Profit for Consumers:

E[TPc] =
1

10
[850, 000− 225, 000− 120, 000− 170] = $50, 483

� Expected Sales Revenue for Merchant: E[SRm] = $630, 000

� Expected Holding Cost for Merchant: E[HCm] = $130, 000

� Expected Ordering Cost for Merchant: E[OCm] = $1, 600

� Expected Total Profit for Merchant:

E[TPm] =
1

10
[630, 000− 130, 000− 1, 600] = $49, 840

� Expected Combined Profit: E[TP ] = E[TPc] + E[TPm] = $100, 323

5 Sensitivity Analysis

We examine how changes in key parameters affect the expected total profit.
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5.1 Parameters Tested

1. Demand Volatility (σi): Increase and decrease σi by 10% and observe the effect on
E[TP ].

2. Deterioration Volatility (γi): Vary γi similarly.

3. Mean Demand Rate (bi): Adjust bi by ±10%.

4. Mean Deterioration Rate (θi0): Adjust θi0 by ±10%.

5.2 Observations

� Demand Volatility (σi): Increasing σi leads to higher variability in demand, which
may result in stockouts or excess inventory. Expected total profit may decrease due to
increased holding costs and potential lost sales.

� Deterioration Volatility (γi): Higher γi increases uncertainty in deterioration rates.
Expected deterioration costs may increase, reducing profit.

� Mean Demand Rate (bi): Increasing bi boosts expected sales revenue, enhancing
profit.

� Mean Deterioration Rate (θi0): Higher θi0 increases expected deterioration costs,
reducing profit.

6 Conclusion

This paper extends traditional inventory models by incorporating stochastic demand and
deterioration rates, providing a more realistic framework for managing deteriorating items.
The analytical approach, combined with simulation techniques, allows for the estimation of
expected profits and the evaluation of optimal policies.

6.1 Key Findings

� Stochastic modeling captures the inherent uncertainties in demand and deterioration,
which are critical in perishable inventory management.

� The expected total profit is sensitive to both demand and deterioration parameters.

� Collaboration between merchants and consumers can lead to better inventory policies
and higher expected profits.
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6.2 Future Research

� Multiple Replenishment Policies: Exploring models where orders are placed mul-
tiple times within the cycle.

� Risk Measures: Incorporating risk measures such as Value-at-Risk (VaR) or Condi-
tional Value-at-Risk (CVaR) in decision-making.

� Dynamic Pricing: Integrating dynamic pricing strategies to manage demand uncer-
tainty.
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